Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

High-quality metamorphic compositionally graded InGaAs buffers

Identifieur interne : 004009 ( Main/Repository ); précédent : 004008; suivant : 004010

High-quality metamorphic compositionally graded InGaAs buffers

Auteurs : RBID : Pascal:10-0121851

Descripteurs français

English descriptors

Abstract

We have investigated the use of a continuous, linear grading scheme for compositionally graded (metamorphic) InxGa1-xAs buffers on GaAs grown using MOCVD, which can be used as virtual substrates for optical emitters operating at wavelengths > 1.2 μm. Graded buffer quality, as quantified by threading dislocation density (TDD) measurements, was investigated for a range of different graded buffer designs and growth parameters. The best graded buffers obtained had TDD < 9.5 × 104 cm-2, at a final composition of x=0.346. MOCVD reactor configuration was found to play a key role in obtaining the best graded buffers. Photoluminescence (PL) measurements were carried out on doped and undoped quantum-well separate confinement heterostructures (QW-SCH) that were re-grown on these buffers. The results showed that these buffers can serve as high-quality strain-relaxed templates for optoelectronic devices operating in the 1.2-1.5 μm wavelength region, and it is expected that with further refinement, high-quality virtual substrates can be made that will allow operation even beyond 1.6 μm.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:10-0121851

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">High-quality metamorphic compositionally graded InGaAs buffers</title>
<author>
<name sortKey="Lee, Kenneth E" uniqKey="Lee K">Kenneth E. Lee</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology</s1>
<s2>Cambridge, MA 02139</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
<orgName type="university">Massachusetts Institute of Technology</orgName>
</affiliation>
</author>
<author>
<name sortKey="Fitzgerald, Eugene A" uniqKey="Fitzgerald E">Eugene A. Fitzgerald</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Department of Materials Science and Engineering, Massachusetts Institute of Technology</s1>
<s2>Cambridge, MA 02139</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
<orgName type="university">Massachusetts Institute of Technology</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">10-0121851</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 10-0121851 INIST</idno>
<idno type="RBID">Pascal:10-0121851</idno>
<idno type="wicri:Area/Main/Corpus">004912</idno>
<idno type="wicri:Area/Main/Repository">004009</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0022-0248</idno>
<title level="j" type="abbreviated">J. cryst. growth</title>
<title level="j" type="main">Journal of crystal growth</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Dislocation density</term>
<term>Doping</term>
<term>Gallium arsenides</term>
<term>Growth mechanism</term>
<term>Heterostructures</term>
<term>III-V compound</term>
<term>III-V semiconductors</term>
<term>Indium arsenides</term>
<term>MOCVD</term>
<term>Nanostructured materials</term>
<term>Optoelectronic devices</term>
<term>Photoluminescence</term>
<term>Quantitative chemical analysis</term>
<term>Quantum confinement</term>
<term>Quantum wells</term>
<term>Stress relaxation</term>
<term>Template reaction</term>
<term>Threading dislocation</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Semiconducteur III-V</term>
<term>Composé III-V</term>
<term>Méthode MOCVD</term>
<term>Analyse quantitative</term>
<term>Dislocation filetée</term>
<term>Densité dislocation</term>
<term>Mécanisme croissance</term>
<term>Photoluminescence</term>
<term>Dopage</term>
<term>Confinement quantique</term>
<term>Puits quantique</term>
<term>Nanomatériau</term>
<term>Hétérostructure</term>
<term>Relaxation contrainte</term>
<term>Arséniure d'indium</term>
<term>Arséniure de gallium</term>
<term>Réaction dirigée</term>
<term>Dispositif optoélectronique</term>
<term>InGaAs</term>
<term>InxGa1-xAs</term>
<term>GaAs</term>
<term>8115G</term>
<term>6172L</term>
<term>8110A</term>
<term>7855</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Analyse quantitative</term>
<term>Dopage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We have investigated the use of a continuous, linear grading scheme for compositionally graded (metamorphic) In
<sub>x</sub>
Ga
<sub>1-x</sub>
As buffers on GaAs grown using MOCVD, which can be used as virtual substrates for optical emitters operating at wavelengths > 1.2 μm. Graded buffer quality, as quantified by threading dislocation density (TDD) measurements, was investigated for a range of different graded buffer designs and growth parameters. The best graded buffers obtained had TDD < 9.5 × 10
<sup>4</sup>
cm
<sup>-2</sup>
, at a final composition of x=0.346. MOCVD reactor configuration was found to play a key role in obtaining the best graded buffers. Photoluminescence (PL) measurements were carried out on doped and undoped quantum-well separate confinement heterostructures (QW-SCH) that were re-grown on these buffers. The results showed that these buffers can serve as high-quality strain-relaxed templates for optoelectronic devices operating in the 1.2-1.5 μm wavelength region, and it is expected that with further refinement, high-quality virtual substrates can be made that will allow operation even beyond 1.6 μm.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-0248</s0>
</fA01>
<fA02 i1="01">
<s0>JCRGAE</s0>
</fA02>
<fA03 i2="1">
<s0>J. cryst. growth</s0>
</fA03>
<fA05>
<s2>312</s2>
</fA05>
<fA06>
<s2>2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>High-quality metamorphic compositionally graded InGaAs buffers</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>LEE (Kenneth E.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>FITZGERALD (Eugene A.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology</s1>
<s2>Cambridge, MA 02139</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Materials Science and Engineering, Massachusetts Institute of Technology</s1>
<s2>Cambridge, MA 02139</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>250-257</s1>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13507</s2>
<s5>354000189573250170</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>30 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>10-0121851</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of crystal growth</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We have investigated the use of a continuous, linear grading scheme for compositionally graded (metamorphic) In
<sub>x</sub>
Ga
<sub>1-x</sub>
As buffers on GaAs grown using MOCVD, which can be used as virtual substrates for optical emitters operating at wavelengths > 1.2 μm. Graded buffer quality, as quantified by threading dislocation density (TDD) measurements, was investigated for a range of different graded buffer designs and growth parameters. The best graded buffers obtained had TDD < 9.5 × 10
<sup>4</sup>
cm
<sup>-2</sup>
, at a final composition of x=0.346. MOCVD reactor configuration was found to play a key role in obtaining the best graded buffers. Photoluminescence (PL) measurements were carried out on doped and undoped quantum-well separate confinement heterostructures (QW-SCH) that were re-grown on these buffers. The results showed that these buffers can serve as high-quality strain-relaxed templates for optoelectronic devices operating in the 1.2-1.5 μm wavelength region, and it is expected that with further refinement, high-quality virtual substrates can be made that will allow operation even beyond 1.6 μm.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A15G</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B60A72L</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A10A</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B70H55</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Méthode MOCVD</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>MOCVD</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Analyse quantitative</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Quantitative chemical analysis</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Dislocation filetée</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Threading dislocation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Dislocación aterrajada</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Densité dislocation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Dislocation density</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Mécanisme croissance</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Growth mechanism</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Mecanismo crecimiento</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Photoluminescence</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Photoluminescence</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Doping</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Doping</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Confinement quantique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Quantum confinement</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Confinamiento cuántico</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Puits quantique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Quantum wells</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Hétérostructure</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Heterostructures</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Relaxation contrainte</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Stress relaxation</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Arséniure d'indium</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Arséniure de gallium</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Réaction dirigée</s0>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Template reaction</s0>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Reacción dirigida</s0>
<s5>29</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Dispositif optoélectronique</s0>
<s5>30</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Optoelectronic devices</s0>
<s5>30</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>InGaAs</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>InxGa1-xAs</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>GaAs</s0>
<s4>INC</s4>
<s5>48</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>8115G</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>6172L</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>8110A</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>7855</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>075</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004009 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 004009 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:10-0121851
   |texte=   High-quality metamorphic compositionally graded InGaAs buffers
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024